318 research outputs found

    Empirical Studies for Reliable Home Area Wireless Sensor Networks

    Get PDF
    Home Area Networks: HANs) consisting of wireless sensors have emerged as the enabling technology for important applications such as smart energy and assisted living. A key challenge faced by HANs is maintaining reliable operation in real-world residential environments. In this thesis research, empirical studies on the spectrum usage in the 2.4 GHz band as well as 802.15.4 wireless channels are performed in diversified real residential environments. Based on the insights drawn from empirical studies, network design guideline and practical solution for Home Area Sensor Network are provided

    Wireless Sensor Networking in Challenging Environments

    Get PDF
    Recent years have witnessed growing interest in deploying wireless sensing applications in real-world environments. For example, home automation systems provide fine-grained metering and control of home appliances in residential settings. Similarly, assisted living applications employ wireless sensors to provide continuous health and wellness monitoring in homes. However, real deployments of Wireless Sensor Networks (WSNs) pose significant challenges due to their low-power radios and uncontrolled ambient environments. Our empirical study in over 15 real-world apartments shows that low-power WSNs based on the IEEE 802.15.4 standard are highly susceptible to external interference beyond user control, such as Wi-Fi access points, Bluetooth peripherals, cordless phones, and numerous other devices prevalent in residential environments that share the unlicensed 2.4 GHz ISM band with IEEE 802.15.4 radios. To address these real-world challenges, we developed two practical wireless network protocols including the Adaptive and Robust Channel Hopping (ARCH) protocol and the Adaptive Energy Detection Protocol (AEDP). ARCH enhances network reliability through opportunistically changing radio\u27s frequency to avoid interference and environmental noise and AEDP reduces false wakeups in noisy wireless environments by dynamically adjusting the wakeup threshold of low-power radios. Another major trend in WSNs is the convergence with smart phones. To deal with the dynamic wireless conditions and varying application requirements of mobile users, we developed the Self-Adapting MAC Layer (SAML) to support adaptive communication between smart phones and wireless sensors. SAML dynamically selects and switches Medium Access Control protocols to accommodate changes in ambient conditions and application requirements. Compared with the residential and personal wireless systems, industrial applications pose unique challenges due to their critical demands on reliability and real-time performance. We developed an experimental testbed by realizing key network mechanisms of industrial Wireless Sensor and Actuator Networks (WSANs) and conducted an empirical study that revealed the limitations and potential enhancements of those mechanisms. Our study shows that graph routing is more resilient to interference and its backup routes may be heavily used in noisy environments, which demonstrate the necessity of path diversity for reliable WSANs. Our study also suggests that combining channel diversity with retransmission may effectively reduce the burstiness of transmission failures and judicious allocation of multiple transmissions in a shared slot can effectively improve network capacity without significantly impacting reliability

    Updated insights into 3D architecture electrodes for micropower sources

    Get PDF
    Microbatteries (MBs) and microsupercapacitors (MSCs) are primary on-chip micropower sources that drive autonomous and stand-alone microelectronic devices for implementation of the Internet of Things (IoT). However, the performance of conventional MBs and MSCs is restricted by their 2D thin-film electrode design, and these devices struggle to satisfy the increasing IoT energy demands for high energy density, high power density, and long lifespan. The energy densities of MBs and MSCs can be improved significantly through adoption of a 2D thick-film electrode design; however, their power densities and lifespans deteriorate with increased electrode thickness. In contrast, 3D architecture electrodes offer remarkable opportunities to simultaneously improve MB and MSC energy density, power density, and lifespan. To date, various 3D architecture electrodes have been designed, fabricated, and investigated for MBs and MSCs. This review provides an update on the principal superiorities of 3D architecture electrodes over 2D thick-film electrodes in the context of improved MB and MSC energy density, power density, and lifespan. In addition, the most recent and representative progress in 3D architecture electrode development for MBs and MSCs is highlighted. Finally, present challenges are discussed and key perspectives for future research in this field are outlined

    Robust Sensor Networks in Homes via Reactive Channel Hopping

    Get PDF
    Home area networks (HANs) consisting of wireless sensors have emerged as the enabling technology for important applications such as smart energy and assisted living. A key challenge faced in deploying robust wireless sensor networks (WSNs) for home automation applications is the need to provide long-term, reliable operation in the face of the varied sources of interference found in typical residential settings. To better understand the channel dynamics in these environments, we performed an in-depth empirical study of the performance of HANs in ten real-life apartments. Our empirical study leads to several key insights into designing robust HANs for residential environments. For example, we discover that there is not always a persistently good channel over 24 hours in many apartments; that reliability is strongly correlated across adjacent channels; and that interference does not exhibit cyclic behavior at daily or weekly timescales. Nevertheless, reliability can be maintained through a small number of channel hops. Based on these insights, we propose Adaptive and Robust Channel Hopping (ARCH) protocol, a lightweight receiver-oriented protocol which handles the dynamics of residential environments by reactively channel hopping when channel conditions have degraded. We evaluate our approach through a series of simulations based on real data traces as well as a testbed deployment in real-world apartments. Our results demonstrate that ARCH can reduce the number of packet retransmissions by a median of 42.3% compared to using a single, fixed wireless channel, and can enable up to a 2.2 X improvement in delivery rate on the most unreliable links in our experiment. Due to ARCH\u27s lightweight reactive design, this improvement in reliability is achieved with an average of 6 or fewer channel hops per link per day

    Energy-Efficient Low Power Listening for Wireless Sensor Networks in Noisy Environments

    Get PDF
    Low Power Listening (LPL) is a common MAC-layer technique for reducing energy consumption in wireless sensor networks, where nodes periodically wake up to sample the wireless channel to detect activity. However, LPL is highly susceptible to false wakeups caused by environmental noise being detected as activity on the channel, causing nodes to spuriously wake up in order to receive nonexistent transmissions. In empirical studies in residential environments, we observe that the false wakeup problem can significantly increase a node\u27s duty cycle, compromising the benefit of LPL. We also find that the energy-level threshold used by the Clear Channel Assessment (CCA) mechanism to detect channel activity has a significant impact on the false wakeup rate. We then design AEDP, an adaptive energy detection protocol for LPL, which dynamically adjust a node\u27s CCA threshold to improve network reliability and duty cycle based on application-specified bounds. Empirical experiments in both controlled tests and real-world environments showed AEDP can effectively mitigate the impact of noise on radio duty cycles, while maintaining satisfactory link reliability

    ARCH: Practical Channel Hopping for Reliable Home-Area Sensor Networks

    Get PDF
    Home area networks (HANs) promise to enable sophisticated home automation applications such as smart energy usage and assisted living. However, recent empirical study of HAN reliability in real-world residential environments revealed significant challenges to achieving reliable performance in the face of significant and variable interference from a multitude of coexisting wireless devices. We propose the Adaptive and Robust Channel Hopping (ARCH) protocol: a lightweight receiveroriented protocol which handles the dynamics of residential environments by reactively channel hopping when channel conditions have degraded. ARCH has several key features. First, ARCH is an adaptive protocol that channel-hops based on changes in channel quality observed in real time. Second, ARCH is a distributed protocol that selects channels on a per-link basis, due to the large link-to-link variations in channel quality observed under empirical study. Third, ARCH is designed to be robust and lightweight. ARCH uses a practical hand-shaking approach to handle channel desynchronization and an efficient slidingwindow scheme that does not involve expensive calculations or modeling, and can be reasonably implemented on memoryconstrained wireless sensor platforms. Fourth, ARCH introduces minimal communication overhead for applications where packet acknowledgements are already enabled. We evaluate our approach through real deployment in real-life apartments with residents’ daily activity. Our results demonstrate that ARCH can reduce the number of packet retransmissions by a median of 42.3% compared to using a single, fixed wireless channel, and can enable up to a 2.2 improvement in delivery rate on the most unreliable links in our experiment. Under a multi-hop routing scenario, ARCH achieved an average 31.6% reduction in radio usage, by reducing the ETX along each path by up to 83.6%. Due to ARCH’s lightweight reactive design, most links achieve this improvement in reliability with 10 or fewer channel hops per day

    Multi-Channel Reliability and Spectrum Usage in Real Homes: Empirical Studies for Home-Area Sensor Networks

    Get PDF
    Home area networks (HANs) consisting of wireless sensors have emerged as the enabling technology for important applications such as smart energy and assisted living. A key challenge faced by HANs is maintaining reliable operation in real-world residential environments. This paper presents two in-depth empirical studies on the wireless channels in real homes. The spectrum study analyzes the spectrum usage in the 2.4 GHz band where wireless sensor networks based on the IEEE 802.15.4 standard must coexist with existing wireless devices. We characterize the ambient wireless environment in six apartments through passive spectrum analysis across the entire 2.4 GHz band over seven days in each of the apartments. Notably, we find that the wireless conditions in these residential environments can be much more complex and varied than in a typical office environment. Moreover, while 802.11 signals play a significant role in spectrum usage, there also exist non-negligible noise from non-802.11 devices. The multi-channel link study measures the reliability of different 802.15.4 channels through active probing with motes. We discover that there is not always a persistently reliable channel over 24 hours; that reliability is strongly correlated across adjacent channels; and that link reliability does not exhibit cyclic behavior at daily or weekly timescales. Nevertheless, reliability can be maintained through a small number of channel hops per day, suggesting channel diversity as a key tool for designing robust HANs in residential environments. Our empirical studies provide important guidelines and insights for robust wireless sensor network design in residential environments

    GPU-based graph traversal on compressed graphs

    Get PDF
    • …
    corecore